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Abstract. The emergence of new species is one of the trickiest issues
of evolutionary biology. We propose a cellular automata model to inves-
tigate the possibility that speciation proceeds in sympatry, focusing on
the importance of the structure of the landscape on the likelihood of spe-
ciation. The conditions for speciation are shown to be limited whatever
the landscape being considered, although habitat structure best favours
the emergence of new species.

1 Introduction

Understanding the origin and maintenance of diversity is a fundamental problem
in biology. Ecology and genetics usually focus on the maintenance of diversity
addressing essential theoretical issues and trying to answer major questions of
applied biology related to the harmful impact of human activities on the current
biodiversity. More romantically, evolution is also concerned by the appearance
of new forms of life on earth.

The emergence of new species is among the most controversial topics in evo-
lution, whose origin is usually tracked back to Darwins seminal The Origin of
species (1859). Several definitions of species have been provided (see [3], Ch. 1 for
review), all fitting parts of the complexity of the process. Surely, the most used
definition of species is related to the biological species concept; species are groups
of interbreeding natural populations that are reproductively isolated from other
such groups [18]. Starting from this definition, theoreticians investigate specia-
tion as the emergence of two sets of individuals from one and the evolution of
reproductive isolation between them.

Different scenarii have been proposed to account for such a diversification
process. The most approved one is allopatric speciation, in which pools of indi-
viduals of a single initial population get geographically isolated because of an
external event (like mountains formation). Sub-populations then differentiate,
simply because they evolve separately. Sympatric speciation, the emergence of
two species within a set of individuals living and reproducing in the same place,
is much more tricky and has long been seen as a purely and unlikely theoretical
hypothesis. The difficulty with sympatric speciation is that the continual mixing
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due to reproduction between individuals of the two incipient species (referred to
as gene flow by evolutionary biologists) opposites the differentiation process.

Adaptive sympatric speciation provides an appealing answer to this issue. The
basic idea is that, if splitting of the population is due to adaptation of the two
pools of individuals to different ecological resources, then every single individual
(whatever the pool it belongs to) has an advantage to mate with a partner
using the same resource as it. This is simply because mating with an individual
exploiting another resource eventually leads to produce unfit offsprings, which
are unable to live on either resource. Also intuitive, this verbal argument calls
for quantitative investigations under the many different ecological and genetic
situations observable in the diversity of biological organisms.

In this contribution, we use cellular automata as a simple formalism to in-
vestigate adaptive sympatric speciation. Some work on sympatric speciation has
been done in the past in the framework of CA’s [1]. We focus in this paper on
the importance of habitat structure on the probability of speciation by habitat
specialization and evolution of assortative mating through a one-locus two-allele
model (see [3], Ch. 4).

2 The Proposed Cellular Automata Model

2.1 Cellular Automata Approach

Cellular automata (CA) are a class of spatially and temporally discrete mathemat-
ical systems characterized by local interaction and an inherently parallel form of
evolution. First introduced by von Neumann in the early 1950s to act as simple
models of self-reproduction in biological systems, CA are considered as models for
complex systems in computability theory, mathematics, and theoretical biology
[4,15,16,22,24,25]. In addition to these theoretical aspects of CA, there have been
numerous applications to physics, biology, chemistry, biochemistry among other
disciplines. The studied phenomena include fluid and chemical turbulence, plant
growth, ecological theory, DNA evolution, propagation of infectious diseases, ur-
ban social dynamics and forest fires. CA have also been used as discrete versions
of partial differential equations in one or more spatial variables [2,8,9,12,23].

A cellular automaton consists generally of a regular array of identically pro-
grammed units called ”cells” which interact with their neighbours subject to a
finite set of prescribed rules for local transitions. Each cell is characterized by
a particular state taken in a discrete set of values. Time progresses in discrete
steps. The state of a cell at time t + 1 is a function only of its own state and of
the states of its neighbours at time t.

In a mathematical formalism, a cellular automaton is defined as the quadruple
A = (L, S, N, f), where L is a regular lattice which consists of a periodic paving
of a d-dimensional space domain, S is a discrete state set, N is the neighbourhood
of size n defined by the mapping

N : L −→ Ln

c −→ N(c) = {c1, c2, . . . , cn} (1)
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and f is a function which specifies the transition rule defined by

f : Sn −→ S
st(N(c)) −→ st+1(c)

(2)

where st+1(c) is the state of the cell c at time t + 1.
The dynamics definition is augmented with initial and boundary conditions

which depend on the considered application.

2.2 Biological Background

We considered a haploid population with discrete and non-overlapping genera-
tions living in a landscape including two types of habitat. Life-cycle involves a
viability selection stage followed by reproduction. During the viability selection
stage, each individual survives according to its adaptation to the habitat it is
living in. All the surviving individuals are allowed to reproduce. Individuals first
enter a mating pool according to some preferences they have and then mate
randomly within the pool. Offsprings are laid close to the place occupied by
their mother before mating. The genetic underlying ecological adaptation and
mating pool preferences are as simple as possible. One ecological locus with two
alleles, A and a, provides adaptation to the first and second type of habitat,
respectively. One mating locus with two alleles, B and b, provides preferences
for a first and a second mating pool, respectively.

In this background, we are interested in the joint evolution of habitat special-
ization and reproductive isolation. Speciation will be achieved if the two groups
of individual adapted to each of the habitat get reproductively isolated by choos-
ing different pools of mating. That is if the genetic structure of the population
evolves towards one of the two following sets of genotypes {AB, ab} or {Ab, aB}.
This scenario, where individuals tend to mate assortatively with respect to genes
non-involved in ecological adaptation, has been called Assortative mating genes
by Maynard-Smith [17], who recognized it as the most plausible scenario for
species to emerge in sympatry. It has received much attention leading to several
modelling attempts (see [3,6,11] for reviews), none of them considering space
explicitly as will be done using our cellular automata model.

2.3 Model Description

To model the spatiotemporal changes in the population, we propose a model
based on a two-dimensional cellular automaton. It is defined on a square lat-
tice where a cell can be either empty or occupied by a single individual which
is assumed to carry one of the two ecological alleles (A or a) and one of the
two mating alleles (B or b). We then consider four categories of individuals :
AB, Ab, aB, ab which will be associated with the state values represented by a
couple (x, y) where x ∈ {A, a} and y ∈ {B, b}. A cell is given by its coordinates
(i, j) in the square lattice L and its state at time t is denoted by st(i, j) which
takes values in the discrete state set S = {A, a} × {B, b} ∪ {∗}, where ∗ repre-
sents an empty cell. The cell (i, j) also has a characteristic of habitat denoted
by ci,j ∈ {H1, H2} corresponding to the two types of habitat.
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Each transition step is divided on three processes : survival which depends on
the ecological allele A or a and the site occupation H1 or H2, mating depending
on the second allele B or b and a local dispersal process of offsprings.

Survival is based on the following transition rules. An individual (A, .) survives
with probability s1

A if it lives in habitat H1 and with probability s2
A if it lives in

H2. An individual (a, .) survives with probability s1
a if it lives in H1 and with

probability s2
a if it lives in H2, with s1

A > s2
A and s1

a < s2
a.

For simplicity, we restrict ourselves throughout this paper to the case :

s1
A = s2

a = s and s2
A = s1

a = 1 − s with s ≥ 0.5.

Let us denote by s̃t(i, j) the intermediate state of cell (i, j) after the sur-
vival phase which is applied only to occupied cells. For each cell (i, j) such that
st(i, j) �= ∗, the survival step is expressed by :

s̃t(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

st(i, j) with probability

s1
A if ci,j = H1 and st(i, j) = (A, .)

s2
A if ci,j = H2 and st(i, j) = (A, .)

s1
a if ci,j = H1 and st(i, j) = (a, .)

s2
a if ci,j = H2 and st(i, j) = (a, .)

∗ otherwise

(3)

Mating. We assume that individuals mate randomly within two pools they join
with some preferences defined by the mating allele, B or b, they carry. It is
important to note that mating process is independent on the spatial localization
of individuals, which conforms to Gavrilets definition of sympatric speciation
[11]. Let S1 and S2 be the mating pools, we denote by p (p ≥ 0.5) the preference
probability of (., b) to be in S1 and (., B) in S2.

Let S
(x,y)
i be the set of individuals xy belonging to Si, i = 1, 2. We have then

Si = S
(a,b)
i ∪ S

(a,B)
i ∪ S

(A,b)
i ∪ S

(A,B)
i and we can calculate the different mating

probabilities as :

p1(a, b) =
p

|S1|
(|Sa,b

1 | + 1
2
|Sa,B

1 | + 1
2
|SA,b

1 | +
1
4
|SA,B

1 |)+
1 − p

|S2|
(|Sa,b

2 | +
1
2
|Sa,B

2 | +
1
2
|SA,b

2 | + 1
4
|SA,B

2 |)

p2(a, b) =
p

2|S1|
(|SA,b

1 | +
1
2
|SA,B

1 |) +
1 − p

2|S2|
(|SA,b

2 | +
1
2
|SA,B

2 |)

p3(a, b) =
p

2|S1|
(|Sa,B

1 | +
1
2
|SA,B

1 |) +
1 − p

2|S2|
(|Sa,B

2 | +
1
2
|SA,B

2 |)

p4(a, b) =
p

4|S1|
|SA,B

1 | + 1 − p

4|S1|
|SA,B

2 |

(4)

In the same way, we obtain the probabilities pi(a, B), pi(A, B) and pi(A, b),
for i = 1..4. They represent all the mating probabilities in a set Si, i = 1, 2,
with a given category of individuals ab, aB, AB or Ab. Each individual xy has
a probability p1(x, y) + p2(x, y) + p3(x, y) + p4(x, y) of mating and can produce
one of the fourth categories :
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(a, b) −→

⎧
⎪⎪⎨

⎪⎪⎩

(a, b) with p1(a, b)
(A, b) with p2(a, b)
(a, B) with p3(a, b)
(A, B) with p4(a, b)

(A, b) −→

⎧
⎪⎪⎨

⎪⎪⎩

(A, b) with p1(A, b)
(a, b) with p2(A, b)
(A, B) with p3(A, b)
(a, B) with p4(A, b)

(a, B) −→

⎧
⎪⎪⎨

⎪⎪⎩

(a, B) with p1(a, B)
(A, B) with p2(a, B)
(a, b) with p3(a, B)
(A, b) with p4(a, B)

(A, B) −→

⎧
⎪⎪⎨

⎪⎪⎩

(A, B) with p1(A, B)
(a, B) with p2(A, B)
(A, b) with p3(A, B)
(a, b) with p4(A, B)

(5)

Dispersal. To describe offsprings dispersal, we will be interested in empty cells
after the survival process. We construct an offsprings matrix produced after the
mating step and denoted by (r(i, j))i,j . The considered rule consists for each
cell (i, j) whose state is given by s̃t(i, j) = ∗ in selecting randomly one of its
neighbouring mated individuals and taking its offspring. Let N : L −→ Ln

define the neighbourhood type in the considered CA model and n = |N(i, j)| its
size defined by its cardinality. Consider for each cell (i, j) the number mt(i, j) ≤
(n − 1), of neighbouring cells occupied by a mated organism at time t. Each

offspring produced in the neighbourhood has a probability
1

mt(i, j)
to colonize

the empty cell (i, j). It will die if it is surrounded only by occupied cells. The
rule summarizing this step is expressed by :

st+1(i, j) =

⎧
⎪⎨

⎪⎩

s̃t(i, j) if s̃t(i, j) �= ∗
r(i′, j′) with probability

1
mt(i, j)

if mt(i, j) �= 0

∗ otherwise

(6)

where st+1 denotes the final state after a complete transition, (i′, j′) ∈ N(i, j)
and r(i′, j′) �= ∗.

3 Simulation Results

The landscape is represented by a square grid of 50 × 50 cells. Accordingly,
the maximal population size is 2 500 individuals. Three matrixes are then con-
structed : habitat matrix which is given or randomly generated and is unchanged
during the simulation. Individuals occupation matrix representing the ecological
and mating characters which are initially randomly generated. The individuals
ab, aB, Ab and AB are represented by 0, 1, 2 and 3 respectively. An empty cell
is represented by 4. An offsprings matrix which is initialized at each iteration
after the mating process.

We used two types of landscape either a highly or a non-spatially structured
habitat as shown in Fig. 1. In both cases, we varied the strength of disruptive
selection s and the strength of assortative mating p between 0.5 and 1. We
followed the evolution of the genetic structure in space and time.

To make the understanding of our theoretical results easier, we first observe
the different types of outcome while varying the model parameters : Extinction,
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(a) Structured landscape (b) Non-structured landscape

Fig. 1. Highly and non- spatially structured considered landscapes

Fixation, Genetic Polymorphism and Speciation. We then present the set of
parameter values allowing for these possible outcomes.

The first pattern we obtain is called Extinction. The numbers of individuals
of the different genotypes go down to 0.

The second obtained pattern is what we call Fixation. In this case, after a few
generations, all the individuals tend to have the same genotype.

The more interesting cases are the ones where individuals of different geno-
types persist. In these cases, simulations end up with either genetic polymor-
phism or speciation. To make the difference between these two potential out-
comes, we used a common quantity called linkage disequilibrium (LD), and
defined as :

LD(t) =
N0(t) ∗ N3(t) − N1(t) ∗ N2(t)

(|L| − N4(t))2
(7)

where Ni(t) is the number of cells in state i at time t and |L| designates the
total number of lattice cells.

Since genetic polymorphism corresponds to one of the two following struc-
tures {AB, aB} or {Ab, ab}, we expect LD to tend towards 0. On the contrary,
when speciation proceeds, LD is expected to converge to 0.25. More specifically,
the simulation stop criterion for speciation corresponds to the following fulfilled
condition :

|LD(t) − 0.25| < ε , for t > T (8)

when ε is a given tolerance and T is chosen to be big enough.
The first two patterns observed in Fig. 2 are called Genetic Polymorphism and

were obtained with the two types of landscape of Fig. 1. In this case, two pools of
individuals persist, each limited to the part of the landscape it is adapted to. As
exemplified in Fig. 2a,b, individuals bearing allele a and A leave in habitat H1
and H2, respectively. But, these two pools of individuals do not correspond to
two species since they are still reproducing one with another. This can be seen
looking at the locus encoding for reproductive isolation. At this locus either
allele b or allele B is fixed, so that all the individuals (whatever their ecologi-
cal phenotype) enter the same mating pools. Which of allele b or allele B get
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fixed depend on initial conditions. Both cases correspond to genetic polymor-
phism as indicated by the null value of LD.

The two following pattern we observed in Fig. 2c,d, correspond to speciation.
In this case the two pools of individuals are fixed for alternative alleles at both
the ecological and the mating loci. For instance, the upper part of the landscape
is occupied by ab individuals while the lower part is occupied by AB individuals.
We also observed a spatial splitting between aB and Ab individuals, which also
is identified as an instance of speciation.

(a) s = 0.8, p = 0.85 (b) s = 0.7, p = 0.5 (c) s = 0.8, p = 1 (c) s = 0.8, p = 0.85
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Fig. 2. Final patterns for different probabilities s and p and the corresponding linkage
disequilibrium graphes

Interestingly, speciation is much faster in a highly structured landscape. Fur-
thermore, in a random landscape the LD goes on varying in a large range of
values while it does not when the habitat is structured. This is because in the
former case the border between the areas occupied by the two species are much
bigger. This gives opportunities for the frequency of the two genotypes to vary
and, consequently, for the LD to fluctuate.

One important biological implication of these results is that completion of
speciation (when it happens) depends on the structure of the landscape.

These phenomena are illustrated by implementing the CA rule given by eq
(6) starting from an arbitrary initial condition and considering a von Neumann
neigbourhood of radius r = 1. The tolerance ε is equal to 0.05. The codes are
written in Matlab using its graphical interface for visualization. In Table 1 and
2, we give the probabilities values for which the speciation hold in the two types
of landscape.

Clearly, selectivity for the mating pool has to be very high for speciation
to happen, while requirements on the strength of disruptive selection are much
lower. We proceed to the same sensitivity analysis considering a non-structured
landscape where habitat H1 and habitat H2 are randomly attributed to each
cell of the grid.
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Table 1. Survival and mating probabilities for speciation with highly structured land-
scape

Mating probability p Survival probability s Speciation time

0.95 0.65 2243
0.95 0.7 1043
0.95 0.75 624
0.95 0.8 535
0.95 0.85 466
0.95 0.9 578
0.95 0.95 995
1 0.55 299
1 0.6 246
1 0.65 263
1 0.7 274
1 0.75 277
1 0.8 307
1 0.9 549
1 0.95 676

Table 2. Survival and mating probabilities for speciation with non-spatially structured
landscape

Mating probability p Survival probability s Speciation time

1 0.5 1345
1 0.55 1881
1 0.6 5175

When the landscape is non spatially structured, the set of parameters allowing
for speciation is even lower. Especially, speciation requires a perfect choice for
each of the mating pools.

It should be noted that the obtained results in Table 1 and 2 for specia-
tion time which corresponds to the first time the condition 8 has met, are very
sensitive to the initial condition which is random for soil occupation and pop-
ulation distribution. Nevertheless, the values of s and p allowing speciation did
not change between several simulations.

4 Discussion

In the Assortative mating genes scenario we investigated, individuals tend to
mate assortatively with respect to genes non-involved in ecological adaptation.
Different models have been set up to investigate the joint evolution of ecological
specialization and reproductive isolation, all including different refinements in
the description of the survival and mating processes (see [3,6,11] for reviews).
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Our cellular automata model confirms that speciation is hard under the As-
sortative mating gene scenario since it requires (when the landscape is highly
structured) a very high level of mating pool preferences (p > 0.9). Nevertheless,
in those conditions, the required level of disruptive selection (that is the level
s of adaptation of the two morphs to each type of habitat) is not as high as
previously reported.

An important feature of our modelling is that the spatial distributions of two
types of habitat are modelled explicitly and that individuals do not choose the
habitat where their offspring will grow up. This differs from previous models
where females are assumed to preferentially lay their eggs in the habitat where
they were raised (e.g., Maynard-Smith [17]) or where other types of niche prefer-
ences are allowed to evolve [7,10,13,14]. Evolution of such preferences is shown to
be an important requirement for speciation to proceed. In our model, offspring
are more likely to live in the same habitat as their parents, although we did not
model it explicitly. This can happen because we assumed offspring to occupy one
of the neighbouring cells around the spatial location occupied by female before
mating. A typical example of such process is reproduction of plants where seeds
are passively dispersed around the trees where they come from. Whether an
offspring is likely to live in the same habitat as its mother then depends of the
structure of the landscape. A highly structured landscape is expected to produce
an involuntary habitat preference while a random habitat is expected to result
in no such by product of limited dispersal.

Indeed, speciation occurs more easily and faster when a strong spatial struc-
ture is included in the model, but it still occurs even in landscape when both
types of habitat are randomly distributed. In this case, unexpectedly, there are
strong spatial genetic structures which do not match with the random distrib-
ution of the two type of environment each species is adapted to. These results
provide us with interesting perspectives to explain sympatric speciation in plants
by adaptive processes as recently demonstrated for palm trees [21].
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